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1 DiD: pooled cross-sectional and panel data

1.1 Repeated cross-sections
Let us start by thinking, what is not Panel Data?

e The Chow test for structural change across time
— two time periods
— many time periods and explanatory variables
e Policy Analysis with Pooled Cross-sectional Data
o Identification strategies
— cross-section comparison
x Assumption: E (y; | x1,...,xp, D=1) = E (y | x1,...,x, D =0)
* Regression model: y; = By + Bizi1 + ... + Bezir + aD; + u;
x Mean effect: a = F (yy + A | x1,...,xx, D=1) — E(y¢ | x1,...,2,, D =0)



* problem: self-selection/unobserved heterogeneity
— before and after comparison

« Assumption: E (y; | z1,...,x, D=1)=E (yp | 1,..., 2k, D =1)

* Regression model: y;; = Bo + B1xi1 + ... + BrTitk + Vit + it

* Mean effect: 4 = E (yy + A | 21, .., zk, D=1)— E(yp | x1,...,xp, D =1)

* problems: pooled cross-sectioinal or panel data are needed; business cycle
sensitivity; Ashenfelter’s Dip (units have prior knowledge of treatment as-
signment hence are prone to change their behaviour accordingly; think about
posttreatment bias)

— DiD estimation
* Assumption (problematic in practice):

E(yt+A | L1y ey Ty D= 1) _E(yt ’ L1y ooy They D= 1)

=FEy+A—yy | x1,.yxp, D=1)—E(ys —yp | 1,...,25, D =0)

* Advantage: elimination of the unwanted influence of unobserved heterogeneity
* Regression model: y;; = Bo+ 121+ ...+ Brxisk +01D; 46215 +03(D; - Tit ) +use
* Mean effect:

b3 =[E(y+ A |21, ..,xp, D=1)—E(yy | x1,...,x5, D =1)]
—[E(ye | 1,0z, D=0)—E(yy | 21,..., 21, D =0)]

- Problems: pooled cross-sectioinal or panel data are needed; temporary economic fluctuations
that affect outcomes of participants and non-participants differently; Ashenfelter’s Dip (units
have prior knowledge of treatment assignment hence are prone to change their behaviour
accordingly; think about posttreatment bias)

1.2 Panel Data

e Balanced panel = 0 attrition rate of data
o Advantages
— reduces data needs
— could control for unobserved heterogeneity
— possible to identify the direction of causation
— study the importance of time dimension in decision making
e Limits
— collection over long time
— simple panel analysis may exacerbate measurement error (twice than corss-section)
— still has selectivity problem (attrition could introduce severe selection problems)
— what if the main variables of interest do not vary across time

Consider a fized-effects two-period panel data model

Vit = Bo + B1xit1 + 60d2¢ + o + ugy

e «; are the things vary across individuals but not over time, which are referred to as
— Fixed effect

— Unobserved heterogeneity



— Unobserved individual effect
e The primary strength of panel data analysis is the ability to remove «;
e Two techniques
— Differencing (First-differences model): Ay; = 0, + BolAx; + Au;
* better than OLS
— Demeaning (Fixed-effect model): (yix — v;) = Bi(xi — T;) + do(d2¢ — d2) + (ui — ;)
* use all nT observations unlike differencing
x if T=2, first differencing and demeaning produce identical coefficient estimates
and s.e.
% «; is swept out of the model = unbiased estimators even if Cov(a,X) # 0
* cannot estimate anything that is constant over time or has a constant rate of
change
— If T = 2, the estimates and test statistics between FE and FD are the same
— If T'= 3, FE is more efficient if the u;; are serially correlated
Good to compare FE and FD = assumptions could be wrong if observe a difference
in estimates

2 Instrumental Variables

2.1 Omitted Variables in a Simple Regression Model
2.1.1 Four ways of dealing with Omitted Variables problem

e Do nothing in estimation but argue about the possible bias
e Proxy variable

o Panel data

o Instrumental variables approach (IV)

2.1.2 Two assumptions for IV

o Instrument exogeneity : Cov(z,u) = 0 = empirically un-testable; use logic and intuition
— z has no partial effect on y
— z should be uncorrelated with the omitted variable

o Instrument relevance: Cov(z,x) # 0 = x = m; + M1z + v and see if m # 0

2.1.3 Identification with IV

o Write 5; as population covariances, then
y =P+ bz +u
cov(z,y) = Preov(z, x) + cov(z,u),

where cov(z,u) = 0, hence

cov (z,y)
ﬂl = 5
cov (z,x)
and
Bo=1y— T

e When 2z = x, meaning x is exogeneous, we obtain the OLS estimator of 5;

. plim(ﬁl) = (1 = consistent if assumptions satisfied



2.1.4 Inference with IV:

Need a s.e. to compute ¢ statistics and confidence intervals = homoscesdasticity assumption
conditional on z.
E(? | 2) = 0% = Var(u)

hence the asymptotic variance of ,31 is

02

nozps,.
where Pi,z is the square of the populartion correlation between x and z.

o If Cov(z,z) is weak, then R? for z, z regression can be small = large sampling variance
for the IV estimtaor
o The asymptotic variance of the IV estimator is always larger when Cov(z,u) # 0

2.1.5 R? of IV estimation
SSRZU residuals

2
=1-
R SST,

e Can be negative
e Cannot be used to compute F tests of joint restrictions
e No natural interpretation when x and u are correlated

2.2 1V Estimation of the Multiple Regression Model
A structural equation (emphasise on fs)
y1 = Po + Bryz2 + B2z1 + wa
to obtain consistent estimators for 55 we need an instrument zo that satisfies
E(u1) =0, Cov(z1,u1) =0, and Cov(zz,u1) =0
A reduced form equation is
Y2 = Ty + To21 + Taze +v2, M2 # 0

and we use this to state the key identification condition that a valid instrument needs to be
correlated with the endogenous variables.

2.3 Two Stage Least Squares

Often more than 1 valid I'Vs for the single endogenous variable = how to use multiple IVs =
the Two Stage least sqaures (2SLS) estimator.

Consider the structural equation
y1 = Po + Bryz + Paz1 + wy

and suppose we have two exogenous variables: zo, z3 and they satisfy exclusion restrictions

e 29,23 do not appear in structural equation



e 29 and z3 are uncorrelated with the error u;

The best IV for ys is hence the linear combination of the z;
Y5 = o + M121 + T2z + T323

where w9 # 0,3 # 0. The structural equation is not identified if m = 0 and w3 = 0; we can
also use F’ statistic to test Hy:mo = 0 and 73 = 0.

1st Stage. Obtain the fitted model with our sample:

5 = o + 121 + Taz0 + A3z
2nd Stage 2. The OLS regression of y; on > and 27:

y1 = Po + B1y2 + B2z1 + wa

e The 2SLS estimates can differ substantially from the OLS estimates.
¢ Avoid doing the second stage manually as the standard errors and test statistics obtained
in this way are not valid.

The asymptotic variance of the 25LS estimator of 81 approximated as

than that of OLS, because

2 .
—2——— is greater
SSTh(1—R2)

e 1 has less variation than g9

o Multicollinearity problem in 2SLS: correlation between 75 and the exogenous variables is
often much higher than the correlation between y» and these variables.

e 2SLS can also be used in model with more than one endogenous explanatory variable

However, we need at least two exogenous variables that do not appear in the structural
equation but are correlated with the endogenous variables yo and ys3

e order condition
o rank condition

2.4 Testing for Endogeneity

When the explanatory variables are exogenous 2SLS is less efficient than OLS (large s.e.) =
test for endogeneity of an explanatory variable

Consider
y1 = Bo + Bry2 + Baz1 +ur

where 19 is the suspected endogenous explanatory variable; we also have two additional
exogeneous variables z3, z4.

1st Step.
Yo = Mo + M121 + Tozo + 323 + W42y + V2
2nd Step.
y1 = Po + By + P2z1 + P22 + 0102 + error

and test for Hy : 61 = 0 using a t statistic. If we reject Hy at a small significant level, we
conclude that y9 is endogenous because Cov(vy,uy) # 0.



3 Specification and Data Issues

3.1 Functional Form Misspecification

o Omitted variable bias: if Cov(u,z;) # 0 = z; is endogenous, which leads to
— biasedness
— inconsistency in all OLS estimators

e Functional Form Misspecification is a special case of omitted variable bias
— omit the squared terms
— omit the interaction terms
— use the level of a variable rather than its log form

3.1.1 Tests for Functional Form Misspecification
RESET (Ramsey’s (1969) Regression Specification Error Test)

e Logic: adds polynomials in the OLS fitted values to the original regression to detect
general kinds of functional form misspecification

1. Estimate y = 8o + 12l + Box2 + ... + Brxr + u to obtain g
2. Estimate the expanded function

y = Bo + By + Paxa + .. + Bray + 0197 + 629° + error

3. testH0:51:52:0

o = apply F test with 2 and (n —k — 1) — 2 =n — k — 3 degrees of freedom
e If 41 and &9 are jointly insignificant, then the original model is correctly specified

Limitations of the RESET test

e No implication on the correct specification even if misspeecification is detected

o Has no power for detecting omitted variables or heteroscedasticity whenever they have
expectations that are linear in the included independent variables

e No power for detecting heteroskedasticity if the functional form is correctly specified

Tests against Nonnested (not F) Alternatives: Davidson-MacKinnon test

e Logic: to decide whether an independent variable should appear in level or logarithmic
form

We test model 1 against model 2:

Model 1.
y = Po+ Pix1 + Paxra +u

Model 2.
y = Po + B1log(x1) + B2 log(xa) + u

1. Estimate model 1. to obtain the predicted values ¢
2. Estimate model 2. to obtain the predicted values gj
3. Estimate the models
y = Bo + Bra1 + Bawa + 017 + error



and
y = Po + P log(x1) + B2 log(x2) +u + 627 + error

The Davidson-MacKinnon test is based on the ¢ statistic on gj and ¢ in the two separated
equations

o If 0; is significant, then the level equation is rejected
o If 05 is significant, then the log equation is rejected

Limitation of The Davidson-MacKinnon test

e The test cannot be applied if the sets of independent variables are different

e The test is not helpful if both models are rejected
— if both models are not rejected, we take the model with the higher (adjusted) R?
— if the effects of key independent variables on y are not very different, then it does

not really matter which model is used
o The level model can be rejected for a variety of functional form misspecification (not
necessarily for the log form)
o Obtaining nonnested tests when the leading case is y versus log(y) is difficult

3.2 Proxy Variables

A proxy variable is a variable that is related to the unobserved variable that we would like to
include in our model e.g., IQ as a proxy variable for ability.

Formal setup
y = Po + Brx1 + Paxa + P32 +u

where £3* is unobserved and z3 is the observed proxy variable, and

x3" = 0y + d3x3 + v3

3.2.1 Minimum requirements to obtain unbiased estimates of 5, and 3,

e u has to be uncorrelated with z1,z2;, 23 and z3
o E(x% | x1,x2,23) = E(25 | x3) = 0o + d3w3 = v3 has to be uncorrelated with x1, z2, z3
(x3 must be a good prozxy for 3.

3.2.2 Use z3 to get unbiased estimators of 81 and (s
Plugging in §p + d3x3 4+ v3 for £3* in popultion model

y = Po + frx1 + Paxa + faxz + u

this yields
y = (Bo + B300) + Brx1 + Poxa + B30373 + v + PB3v3
where
y=ap+ B1x1 + faxra + azwz +e

with ag = By + (300, a3z = (303, and e = u + B3v3

= since both u and v3 i.e., e are uncorrelated with 1, xs, x3, we have unbiased estimates of
B1 and fa.

o and unbiased estimates of ag, ag



3.2.3 Using Lagged Dependent Variables as Proxy Variables

Using lagged dependent variable in a cross-sectional equation provides a simple way to account
for historical factors that cause current differences in the dependent variable.

Yy = Bo + Brx1 + Poxe + B3yi—1 +u

where the lagged dependent variable 31 could control for historical confounders.

3.3 Measurement error
Imprecise measurement = measurement error

e Measurement error in x
e Measurement error in y

3.3.1 Measurement Error in the Dependent Variable (y)
©=y—-y
where y* is the unobserved actual dependent variable.

We then obtain an estimable regression model by plugging eg = y — y* into a regression
equation that satisfies the Gauss-Markov assumptions (MLR.1-4):

yr = Bo + B1x1 + Bowe + ... + Brrr +u+eg

OLS estimators will be unbiased

o If E(eg) # 0 which is naturally the case

o If E(eq | z1,...,xk) = 0 ~~ if the the measurement error is systematically related to one
or more of the explanatory variables, it can cause biased OLS estimators

o If ep and u are uncorrelated, then Var(u+eg) = 02 + 02 > o2, which sacrifices efficiency
(statistical significance) due to larger error variance

3.3.2 Measurement Error in the Dependent Variable (x)

For a regression model that satisfies the Gauss-Markov assumptions, the measurement error of
independent variable is
€p = T — T},

Assumptions

o E(er) =0 ~~ the average measurement error in the population is zero
e E(u|zr) =FE(u|x})=Eu|zg2;) =0= E(y |z, 2;) = E(u=1y | x}) ~ xj, does
not affect y after xj has been controlled for

Actual model estimated:
y = Bo+ Bix1 + (u— Prer)

Whether we can obtain unbiased estimators after replacing z] with x; depends on the
assumptions made about the correlation between measurement error ey and x:

o Cov(z1,e1) =0



— E(u) = E(e1) = 0 and Cov(zy,u) = Cov(zi,e1) = 0, E(u — pre1) = 0 and
Cov(z1,u — pre1) = 0 = unbiased estimates of fy and 1
— since u is uncorrelated with ej, Var(u — Bie1) = o2 + 3202, = measurement error
increases the error variance (unless 1 = 0) but this does not affect the OLS
properties
e Cov(xy,e1)#0

— Classical errors-in-variable (CEV) assumption

Cov(z},e1) = 0= Cov(xy,e1) = E(z1,e1) = E(z},e1) + E(e3) =0+ 02, = 04
- Since y = By + f1x1 + (u — Bre1), the OLS estimates will be biased and inconsistent

Cov(z1,u — pre1) = —f1Cov(x1,e1) = —ﬁlazl

- This leads to attenuation bias i.e., By is biased towards zero, because

2

.5 Oy Var(xy)
l — 1 — 1
plimf 51(02T P )= b1 Var(zy)
and Var(z?)
. ar(x
Var(z1) > Var(z]) = W <1

3.4 Missing Data, Nonrandom Samples and Outliers

It is said to be a data problem when the random sampling assumption is violated. Assumption
MLR.2: We have a random sample of n observations, {(z;1,zi2,...,Tik,y1) : @ = 1,...,n},
following the population model y = Sox1 + f1x2 + ... + Brxy + u.

There are three situations of violation:

o Missing data
o Nonrandom sampling
e Outliers

3.4.1 Missing data
e Missing at random = no bias but | sample size hence | precise estimation
o Missing systematically = biased estimates

3.4.2 Nonrandom Samples

Missing data is more problematic when it results in a nonrandom sample from the population

e If the sample selection based on the independent variables, the estimators are
unbiased = exogenous sample selection.
o If the sample selection based on the dependent variables, the estimators are biased
and inconsistent = endogenous sample selection.
— possible solution: Tobit model

Sample selection bias



e Endogenous selection can result in a sample selection bias in the OLS estimates
e Possible solution: Heckman selection model

3.4.3 Outliers/Influential observations

An observation is an outlier if dropping it from the analysis changes the key OLS estimates
by a practically large amount

Why there are outliers:

e Data entry mistakes
e One or several members of the population are very different in some relevant aspect from

the rest of the population
— OLS should be reported with and without outlying observations

Ways to Deal with Outliers:

o Drop the outliers when comprise < 5% of the sample population
o Functional form transformation (to forms less sensitive to outliers)

— Log forms
e Use method that is less sensitive to outliers than OLS i.e., Least absolute deviations

(LAD)
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